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In [9] I showed that sheaves on a space H can be regarded as symmetric Cauchy- 
complete B-categories for a certain bicategory B formed from H. Here I extend this 
result to sheaves on a general site. More particularly, from a cite C, with pre- 
topology P, I construct a bicategory of ‘relations’, Rel(C, P). Then the category of 
sheaves on C is biequivalent to the bicategory of symmetric Cauchy-complete 
Rel(C, P)-categories. 

There are several ways of looking at this result. Firstly it extends, to general sites, 
the idea [4,3] (derived from Boolean-valued set theory) that sheaves on a space are 
sets with equality taking values in the open-set lattice of the space. Secondly, it 
places topos theory (and its logic) in the context of generalized logic [6], where 
equality exists as symmetric horn. Thirdly, it exhibits the sheaf condition as a 
further example of Cauchy-completeness for categories (which property was so 
named by Lawvere [6] since it includes the usual notion of Cauchy-completeness for 
metric spaces). 

1. The bicategory of relations 

Let C be a locally small (but not necessarily small) category with pullbacks, and P 
a pretopology on C (see, for example, p. 12 of [5]). 

If U, u are objects in C then a crib/e R from u to u is a set of spans from u to IJ 
such that 

P’ 

1 

/“\ E R implies 
/“\ 

ER 
u V u V 

for any arrow p’+p with codomain p. 
Of course any span 
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generates a principal crible denoted 

Given a crible R from u to v, the reverse crible R* from v to u is defined by 

R*={(o,p); (P,~)ER}. 

We define a closure operation on the poset Cribles (u, v) (order is inclusion) as 
follows: 

Pi 
1 

; Zl a cover (pi”p); such that 
/“\ 

V U V 

Call a closed crible a relation. 

Examples. If C is a locale, or a Grothendieck topos (or even a lex-total category 
[8,7]) and P is the canonical topology, then the relations are all principal - that is, 
generated as cribles by a single span. In fact, a relation R from u to v is generated by 
the union of those subobjects of u x v which are in R. Further a crible generated by a 
subobject of u x v is closed. Hence there is a bijection between relations from u to v 

and subobjects of u xv. 

Composition of relafions. Given cribles R from u to v and S from v to w we define 

SoR={(a,&; Zysuch that (a,y)eR, @,&ES}. 

It is straightforward to check the following properties: 
(i) T~(SoR)=(TaS)oR. 

(ii) ((l,,l,))~R=R=R~((l,,l,)). 
(iii) If S G S’ and R G R’ then 

SORCS’QR and SoRcSaR’. 

(iv) (UiSi)oR=IJi(Si”R), SoIJiRi=IJi(SoRi) 
(v) (SoR)*=R*.=S*. 

(vi) SaR =SQR. 

Definition of B = Rel(C, P). The objects of B are the objects of C. The arrows from 
u to v are the relations. The 2-cells are inclusions. 
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Composition of relations R from u to o,S from o to w is given by 

S-R=SQR. 

The identity of u is (( 1 ,,, 1,) > . 

Using the properties listed abovdis easy to prove that B is a bicategory, locally 
a cocomplete poset (with VRi=U Ri), and that composition (on either side) pre- 
serves suprema. Further ( )*: B+B is an involution which is the identity on objects. 

2. B-categories and modules 

I recall here briefly some of the theory of categories based on a bicategory B 
[1,2,9]. I assume that B satisfies the conditions of the last paragraph. 

A B-category X is a set X with functions e:X+obj B and d:XxX-+morph B 
satisfying: 

(i) d(x,,xt):e(xI)~e(xz), 
(ii) 1 tix) 5 4x,x), 

(iii) d(xz,x3) - d(x, ,x2) I d(x, ,x3). 
We say that X is small if e-‘(u) is small for all u E B. 

A R-functor, f : X+ Y, is a function f : X* Y satisfying 

(i) e(x) = @S(x)), 
(ii) d(xt ,x2) 5 d(fxt , fk>. 

A B-transformation exists from f to g: X-+ Y (and we write f sg) if l,,~ d(fx,gx) 
all XEX. 

So B-categories form a bicategory B-Cat, and it makes sense to talk about B- 
equivalent B-categories. A B-category Xis called skeletal if, whenever e(x) = e(x’) = u 
and I,sd(x,x’), lusd(x’,x), then x=x’. As usual we have that every B-category is 
B-equivalent to a skeletal B-category. 

A B-category X is symmetric if 

d(xl,x2) = (d(x,,x,))* all x1,x2 in X. 

To each object u of B there is a special B-category denoted ri defined by ri = { *}, 
e(*)=u, d(+,*)=l,. 

Now to describe Cauchy-completeness I need to define the notion ‘adjoint pair of 
modules’ (see [6]) between B-categories. For brevity I will look only at the special 
case when one of the B-categories is of the form fi. An adjointpair of modules from 
6 to X is a pair of functions, 9, ~:X+morph B, satisfying 

AM(i) @(x):n+e(x), w(x):e(x)-)u. 
AM(ii) d(x,x’) - @(x) i @(x’), v(x). d(x’,x) I I. 

AM(iii) 1 .I V, v(x). q(x). 
AM(iv) @(x’) . y(x) I d(x, x’). 

A B-category X is Cauchy-complete if for each u E B and each adjoint pair of bi- 
modules @, w from li to X there is an element XE X such that e(x) = u and 

Q(Y) = d(x, YX U/(Y) = d(y, x) (all y EX). 
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3. Sheaves 

We define a functor 

L:Shv(C,P)dB-Cat (B=Rel(C,P)) 

as follows: If F is a sheaf then 

L(F) = UcF(u). 

Further, if SE F(u), t E F(o) then 

e(s) = u, d(s, t) = . 

It is straightforward to show that d(s, t) is a relation, and in fact that L(F) is a B- 
category. The extension of L to morphisms is immediate and it is easy to see that L is 
a fully-faithful functor. Notice that d(t,s)= (d(s, t))*; and that if s and t have 
e(s) = e(t) = u, 1,~ d(s, t) then s = t. Hence L lands on symmetric skeletal B-cate- 
gories. 

Proposition 1. L(F) is Cauchy-complete. 

Proof. Consider an adjoint pair of modules @, w from ti to L(F). Condition AM(iii) 
says that 

Hence there is a cover 
ai 

(Ui - r&El 

such that for each icl there is an SUE L(F) with 

(ai, ai) E Y&i) ’ @@iI* 

This means that for these si there are arrows Ai such that (ai, j.J E: @(si) and 

(Ait ai) E V(Si)- 

Make a choice of this data: the cover, the si and the ;li. Define sections Qi over Ui 

by 

oi = F(Ai)(si). 

I claim that these oi are a compatible family of sections. First note that oi does not 
depend on the choice of lie Suppose ,Ui is another arrow with (ai,pui) E @(si), 

(Pi, oi) E r&i). Then 
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Hence FAi(si)=F~#J. Now to prove the compatibility of the oi consider the 
diagram 

where the diamond commutes. We need to show that Ffli(Oi) = Fpi(oj). But clearly 

(AiPi, Ajbj) E #(sj) o V(si) 5 d(si,sj) (by AM(iv)). 

Hence 

FPi(ai) = F(AiPi)(Si) = F(~jPj)(sj) = Fpi(oj)* 

Since F is a sheaf we get the existence of a section o over u such that Foi(o) = cri. 
I will now prove that 

G(s) = d(o, s) and w(s) = d(s, a). 

The first step is to show that 

d(O, S) = U d(ai, s) ’ ((ai, 1 uj)> * 
iel 

The inclusion of the right-hand-side in the left is easy. To see the opposite inclusion 
consider the diagram 

l4iX.W 

/ \ 
u~,,,w,~ where u/w\ v Ed(o,s). 

Clearly, 

ii x”w\ 
ui W 

\ 
W 

is in d(oi,s) and hence 

2djx.w 

\ 

/w\ 
U V 
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belongs to d(0i.s) o ((a;, 1,)). But (Ui X, W+ W)i is a cover and SO 

/z 
U V 

is in the right-hand-side. 

Next, notice that ((cz,, 1,‘)) I #(ai) (by AM(ii)) and so 

~(cJ,.v) 5 U d(Oi,S) * @(ai) s G(S) (by AM(ii)). 

Similarly 

Finally, notice that 

s $J Q(S) ’ 4oi9 0) ’ ((ai9 1 a,)> 

5 v @W o u/(oJe ((ai, la,)) Crust proved) 

5 I_) d(ois S) o ((ai, 1 a,)> (AM(W) 

=d(o,s). cl 

Proposition 2. If X is a Cauchy-complete, skeletal, symmetric B-category then X is 
L(F) for some sheaf F. 

Proof. It is clear how to define F on objects: 

Fu = e-‘(u). 

Given an arrow y : u+ v in C, and an element x E X over v we want to define F?(x) 
over U. To construct this element we consider the adjoint pair of bimodules from li 
to x 

G(Y) = {(a, P); (WV P) E d(x, Y)}, V(Y) = G*(Y). 

Then Fy(x) is the element guaranteed by the Cauchy-completeness of X. Since X is 
skeletal Fy(x) is uniquely determined by 

WW, Y) = q(Y) all Y E X. 

Functoriality of F follows easily. 
Notice that if 6: u-, w and x’ lies over w then Fy(x) = Fd(x’) iff (y, 6) E 4x,x’); so 

L(F) = X. 
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Now let’s check that Fis a sheaf. Suppose (x,) , ,E I is a compatible family of sections 
(xi lying over u;), where 

is a cover. To produce a section over u consider the adjoint pair of modules from ri 
to x: 

e(U) = U d&i* V) ’ ((ai 1 uj)> 9 w(u) = @*oh 

It is not hard to check that the resulting section, x say, is unique with the property 
that F&(x) =x; (iE I). 0 

As a consequence of these two propositions we have: 

Theorem. Shv(C,P) is biequivalent to the bicategory of symmetric Cauchy- 
complete Rel(C, P)-categories. 

Proof. The functor L defined earlier is in fact a homorphism of bicategories. The 
fully-faithfulness of L, together with the scarcity of 2-cells involving skeletal B- 
categories, imply that L is always an equivalence of horn-categories. Since every B- 

category is B equivalent to a skeletal B-category, Propositions 1 and 2 imply that the 
B-categories of the form L(F) are exactly those which are B-equivalent to symmetric 
Cauchy-complete B-categories. 0 

Corollary. If E is a Grothendieck topos (or even a lex-total category) then E is bi- 
equivalent to the bicategory of small symmetric Cauchy-complete Rel E-categories. 

Proof. Complete the identification of Rel(E,P) (P the canonical topology), begun 

in Section 1, as the usual bicategory of relations Rel E. Then E= Shv(E, P) (see [7] 
for the lex-total case). 0 
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